847 research outputs found

    Pathways to new drug discovery in neuropsychiatry

    Get PDF
    There is currently a crisis in drug discovery for neuropsychiatric disorders, with a profound, yet unexpected drought in new drug development across the spectrum. In this commentary, the sources of this dilemma and potential avenues to redress the issue are explored. These include a critical review of diagnostic issues and of selection of participants for clinical trials, and the mechanisms for identifying new drugs and new drug targets. Historically, the vast majority of agents have been discovered serendipitously or have been modifications of existing agents. Serendipitous discoveries, based on astute clinical observation or data mining, remain a valid option, as is illustrated by the suggestion in the paper by Wahlqvist and colleagues that treatment with sulfonylurea and metformin reduces the risk of affective disorder. However, the identification of agents targeting disorder-related biomarkers is currently proving particularly fruitful. There is considerable hope for genetics as a purist, pathophysiologically valid pathway to drug discovery; however, it is unclear whether the science is ready to meet this promise. Fruitful paradigms will require a break from the orthodoxy, and creativity and risk may well be the fingerprints of success

    Frontal lobe changes occur early in the course of affective disorders in young people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More severe and persistent forms of affective disorders are accompanied by grey matter loss in key frontal and temporal structures. It is unclear whether such changes precede the onset of illness, occur early in the course or develop gradually with persistence or recurrence of illness. A total of 47 young people presenting with admixtures of depressive and psychotic symptoms were recruited from specialist early intervention services along with 33 age matched healthy control subjects. All participants underwent magnetic resonance imaging and patients were rated clinically as to current stage of illness. Twenty-three patients were identified as being at an early 'attenuated syndrome' stage, while the remaining were rated as having already reached the 'discrete disorder' or 'persistent or recurrent illness' stage. Contrasts were carried out between controls subjects and patients cohorts with attenuated syndromes and discrete disorders, separately.</p> <p>Results</p> <p>The patients that were identified as having a discrete or persisting disorder demonstrated decreased grey matter volumes within distributed frontal brain regions when contrasted to both the control subjects as well as those patients in the attenuated syndrome stage. Overall, patients who were diagnosed as more advanced in terms of the clinical stage of their illness, exhibited the greatest grey matter volume loss of all groups.</p> <p>Conclusions</p> <p>This study suggests that, in terms of frontal grey matter changes, a major transition point may occur in the course of affective illness between early attenuated syndromes and later discrete illness stages.</p

    Generation of Induced Pluripotent Stem Cells from the Prairie Vole

    Get PDF
    The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more restrained mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding mating strategies have been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles are small mouse-like rodents that form enduring pair bonds in the wild as well as in the laboratory, and consequently they have been used widely to study social bonding behavior. The lack of targeted genetic approaches in this species however has restricted the study of the molecular and neural circuit basis of pair bonds. As a first step in rendering the prairie vole amenable to reverse genetics, we have generated induced pluripotent stem cell (IPSC) lines from prairie vole fibroblasts using retroviral transduction of reprogramming factors. These IPSC lines display the cellular and molecular hallmarks of IPSC cells from other organisms, including mice and humans. Moreover, the prairie vole IPSC lines have pluripotent differentiation potential since they can give rise to all three germ layers in tissue culture and in vivo. These IPSC lines can now be used to develop conditions that facilitate homologous recombination and eventually the generation of prairie voles bearing targeted genetic modifications to study the molecular and neural basis of pair bond formation

    Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders.</p> <p>Methods</p> <p>We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR) gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR).</p> <p>Results</p> <p>Our analysis revealed a genomic deletion containing the oxytocin receptor gene, <it>OXTR </it>(MIM accession no.: 167055), previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The proband's affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate <it>OXTR </it>expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that <it>OXTR </it>mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls.</p> <p>Conclusion</p> <p>Together, these data provide further evidence for the role of OXTR and the oxytocin signaling pathway in the etiology of autism and, for the first time, implicate the epigenetic regulation of <it>OXTR </it>in the development of the disorder.</p> <p>See the related commentary by Gurrieri and Neri: <url>http://www.biomedcentral.com/1741-7015/7/63</url></p

    Alterations of prolyl endopeptidase activity in the plasma of children with autistic spectrum disorders

    Get PDF
    BACKGROUND: Prolyl Endopeptidase (PEP, EC 3.4.21.26), a cytosolic endopeptidase, hydrolyses peptide bonds on the carboxyl side of proline residue in proteins with a relatively small molecular weight. It has been shown that altered PEP activity is associated with various psychological diseases such as schizophrenia, mania and depression. Autistic Spectrum Disorders (ASD) are neuropsychiatric and behavioural syndromes affecting social behaviours and communication development. They are classified as developmental disorders. The aim of this study was to examine the hypothesis that PEP activity is also associated with ASDs. METHODS: Fluorometric assay was used to measure PEP activity in EDTA plasma in children with ASD (n = 18) aged 4–12 years (mean ± SD: 7.9 ± 2.5). These results were then compared to PEP activity in a control group of non-ASD children (n = 15) aged 2–10 years (mean ± SD: 6.4 ± 2.2). RESULTS: An alteration in PEP activity was found in the children with ASD compared to the control group. There was much greater variation of PEP activity in the group of ASD children when compared to the controls (SD= 39.9 and SD 9.6, respectively). This variation was significant (p < 0.0005), although the mean level of PEP activity in the group of ASD children was slightly higher than in the control group (124.4 and 134.1, respectively). CONCLUSION: Our preliminary finding suggests a role for PEP enzyme in the pathophysiology of autism but further research should be conducted to establish its role in the aetiology of psychiatric and neurological disorders, including autism and related spectrum disorders
    corecore